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1. PROGRAM OBJECTIVES

The objective of this research is the investigation of several issues related to coordination in
organizations. In particular, an organization is coordinated through direct and indirect means.
The direct means includes the set of decision rules that the organization members use and the
commands that they issue to each other. Indirect means include the dissemination of
information within the organization; for example, organization members may share information
or they may inform each other as to the actions they plan to take or decisions they have made.
Coordination becomes a complex issue in variable structure organizations. Not only do the
decision rules and the information architecture have to work for each fixed structure. but the
designer has to deal with the problem, a metaproblem, of coordinating the variability. This
becomes a particularly difficult problem in organizations that exhibit substantial complexity and
redundancy in their information structure. The redundancy is necessary both for robustness
and for flexibility and reconfigurability. In order to address these problems two main tasks
were defined; they are described in the next section. In addition, some basic work in algorithms
and Colored Petri Nets needs to be done to develop tools and techniques for supporting the
analysis and design.

2. STATEMENT OF WORK

The statement of work, as described in the proposal, is given below.

Task 1: Consistency and completeness in distributed decision making

Develop a methodology for analyzing and correcting the set of decision rules used by
an organization with distributed decision making. The methodology is to be based on
the modeling of the distributed decision rules in the form of a Colored Petri Net and on
the analysis of the net using s-invariant properties and occurrence graphs. The ability to
test and correct the set of rules has direct impact on the extent of coordination needed in
an actual organization and the resulting communication load.

Task 2: Variable Structures: Heuristic rules in the Lattice algorithm constraints

Develop a methodology for selection of the degrees of redundancy and complexity and
a procedure for checking the validity of the different degrees (to be derived from the
DFS algorithm of Andreadakis) and incorporate them in the Lattice Algorithm.
Generalize the approach to multilevel organizational structures and to variable
structures, where variable structures are obtained by folding together different fixed
structures. The real focus of the task is to introduce redundancy and complexity as a
way of containing the dimensionality problems inherent in flexibility and reducing the
coordination requirements.

Design a Symbolic Interface for the Lattice algorithm. The interface would have the
capability of interpreting natural language inputs entered by the user and will include
some symbolic processing. The system will generate the interconnection matrices used ,
as input to the Lattice algorithm. The designer would then use the various tests
described in this proposal (such as the DFS algorithm) to check the validity of the
interconnection constraints and to make required modifications.

Task 3: Information Dissemination

Semiannual progress reports will be submitted in accordance with ONR requirements.
The results of this research will appear in thesis reports and in technical papers to be
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presented at professional meetings and published in archival journals. In addition, oral
presentations will be given periodically as arranged with ONR.

3. RESEARCH PLAN

The research plan describes the strategy for meeting the program objectives. Specifically the
research plan is organized around a series of specific well-defined research tasks that are
appropriate for theses at the master's and Ph.D. level. Individual students are assigned to each
task under the supervision of the principal investigator. Additional staff from the C31 Center
are included in the project whenever there is specific need for their expertise..

The empirical development of the set of decision rules used by the members of an organization
(the DMs) to perform a wide variety of tasks, or the decomposition of normative or prescriptive
rules so that they can be assigned to different DMs. can result in knowledge bases that are
inconsistent, incomplete and partially erroneous due to a number of human and implementation
related factors involved in the process. A task that addresses a fundamental question in
integrating the system and coordination models, namely, the consistency and completeness of
the embedded rules, was initiated. The focus of the task is the development of a methodology
for analyzing and correcting the set of decision rules used by an organization with distributed
decision making. The methodology is based on the modeling of the distributed decision rules in
the form of a Colored Petri Net and on the analysis of the net using s-invariant properties and
Occurrence graphs. This work is being done by A. Zaidi as part of his Ph.D. thesis.

In preparation for task 2, several subordinate tasks have been initiated that focus on the
development of algorithms and tools. One problem that has come up a number of times and
needed clarification is the discrepancies between the theoretical constructs of Petri Nets,
especially concurrency, and the software implementation of Petri Net analysis and design tools
In order to understand the behavioral properties of the Petri Net software, a short project was
carried out in which the early work of Grevet and Levis (1988) on coordination was re-
examines in the context of Colored Petri Nets. This project was completed during the summer
by Ms. Hedy Rashba as a master's project.

A second issue that affects directly the use of the lattice algorithm in task 2 is the computation
of s-invariants and the extension of the algorithm to the deternunation of deadlocks and traps in
the organizational structure. Ms. Jin is completing her Master's thesis on this subject.

With the second of these two projects is completed, work will start on the specifics of Task 2.

4. STATUS REPORT

This section presents a discussion of the work carried out during the indicated period of
performance. It is organized along the task structure described in Sections 2 and 3.

4.1 CONSISTENCY AND COMPLETENESS IN DISTRIBUTED
DECISION MAKING

Following are some of the issues that have been the focus of research effort during the
reporting period.

* Techniques to reduce the size of the problem
* Occurrence graph analysis
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A detailed research plan for this task is shown in Figure I. The nodes in the chart describe
major issues or sub-issues, which are either investigated or are required to be researched. The
plan is likely to change with time as new results are obtained.

A simple Colored Petri Net (CPN) representation was developed which can be used to
transform decision rules represented in terms of expressions in First Order Predicate Calculus
(FOPC). To automate the process of transforming decision rules to their equivalent CPN
representation. a software program was written during the reporting period of this document.
The algorithm for transforming decision rules to CPN representation is implemented on Design
CPNTM using MLUM. The program takes a text file with decision rules as the input and
transforms the rules to a Colored Petri Net. In addition, a procedure, if invoked, works on the
CPN and identifies the incomplete cases in the rule base. The program has been tested and it
appears to work. Further tests will be carried out as the work progresses.

SCPN Stutr Bee ita

Ae enedonof Rule Base o t (she aant Hnanyds) roiitees

(OG Shllyl

Heu ske s Invelon of Caored

for Reductlom in w~~d~e
CoOtStatcu Efot

Figure I Possible Directions of Research

The analysis of the underlying Ordinary Petri Nets (PN) of the CPN using s-invariant
properties has been found to reveal a number of problems in the set of decision rules being
modeled by these nets. The results of the s-invariant analysis have been reported in earlier
report (TDM initiative). During this reporting period, a program has been implemented on
Design CPNrM that constructs an incidence matrix of the drawn CPN. The incidence matrix can
then be input to the s-invariant algorithm already implemented in C.

4.1.1 Problem Reduction Techniques

A large set of decision rules, when transformed to an equivalent CPN representation, yields a
large net. The computational effort required to calculate the s-invariants makes the approach
infeasible for such large sized nets. The research effort was directed on an approach to break
down the initial problem into several non-interacting sub-problems, and then calculating the
invariants for these smaller problems individually. The FindPath algorithm [V. Y. Jin, 19891
has been found promising for achieving this goal. The algorithm, if applied to an output, gives
all the paths starting from all the inputs and terminating at the selected output, thus isolating the
sub-net corresponding to a particular output from the rest of the net. The s-invariant algorithm
can now be applied to this small net. An iterative application of the FindPath and s-invariant
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algorithms will yield all the invariants of the original net. The approach is promising since it not
only breaks the computationally large problem into smaller problems but also yields a very few
number of redundant results. During this reporting period, a new version of the FindPath
algorithm was implemented, which works on the graph itself and redraws the relevant portions
(relative to a given output) of the net on a separate page.

In a parallel effort, a number of PN reduction techniques have been investigated to reduce the
size of the net. Several such techniques have already been reported in the literature on PN
[Jensen, 1991], [Andreadakis, 19901. The focus of the effort was to apply the transformation
techniques used in First Order Predicate Calculus (FOPC) to an equivalent PN representation.
The result of this effort reduces the PN to a smaller net.

In FOPC, if we have a conditional expression of the form, pI -> p2, where pi E rule base,
then predicates p I and p2 are semantically identical if and only if p I -/-> pi, where i * 2 and pj
-/-> p2. where j # 1.

The above mentioned result from FOPC yields the two PN reduction techniques shown in
Figure 2a. In the figure. the two places labeled as p I and p2 are compounded into a single
compound place labeled as p12. In a more general case, an entire segment of a net can be
replaced by a single compound place as long as all the boundary nodes of the sub-net are all
places and have either input arcs coming from outside the boundary or output arcs going out of
the boundary of the sub-net.

Similarly, Figure 2b shows the dual techniques for reducing the net by compounding sub-nets
into compound transitions.

.. P1 P2 P12

IP123

(a)

Figure 2 Petri Net Reduction Techniques
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ti t123

(b) Duals

Figure 2 Petri Net Reduction Techniques

The Petri Net reduction techniques presented in Figure 2 can also be viewed as producing an
abstract description of the rule base. The approach gives a hierarchical methodology to solve
the problem. The hierarchical problem solving approach, however, requires more thought,
which at this moment is beyond the scope of the research. A number of other transformations
in FOPC can also be used to reduce the net, but such techniques may lead to time consuming
and more involved search procedures for PN structures. However, the two techniques, if
applied iteratively, would reduce the net substantially and may cover cases that are complex and
difficult to find at first inspection.

4.2. Occurrence Graph Analysis

An Occurrence graph associated with a PN and an initial marking represents all possible
markings of the net (recall that the marking of the net represents the state of the system) that can
be achieved from the initial one. It has been reported in an earlier report that the generated
Occurrence graphs can reveal a number of the remaining (according to the list of problems
listed in the proposal) problems in the set of decision rules. This report presents some of the
specific analyses that help find some of the inconsistent and redundant cases. The calculation of
Occurrence graphs can yield very large graphs making it difficult to look for the combinations
of markings (states) that correspond to erroneous decision rules. The two PN reduction
techniques mentioned in the previous section help resolve this issue to a certain extent.
However, a number of other factors such as presence of loops in a small net can have a
substantial effect on the size of the Occurrence graph. One possible approach is to isolate the
circular rules that give rise to these loops before starting to construct an Occurrence graph. The
circular rules can be found during the s-invariant analysis. It seems at this moment that this
issue is application-dependent and requires more effort to resolve. Another issue raised in the
previous report was the determination of initial markings. With no knowledge of the set of
valid inputs, the search for the valid input 'ectors in the input space is a combinatorial problem;
the calculation of the Occurrence graphs for all such candidate input vectors is computationally
infeasible. In order to resolve the issue of initial marking, an approach is being investigated that
has, so far, been found promising and appropriate. The approach is to reverse the directions of
the arcs in the net and then initializing the net by putting tokens in each output place (the set of



output is assumed to be known). After initializing the net, an Occurrence graph is generated
and checked for states corresponding to the erroneous cases. Some of the new results obtained
during the reporting period are outlined below.

Algorithm for Redundancies and Subsumed Rules

1. Construct an ordinary PN of the original CPN by replacing arc expressions by constants
and redefining all color sets in the Global Declaration node.

2. Construct a set. A, consisting of places with multiple input arcs (starting from the set of
valid outputs).

3. From A select a place, pO, apply the FindPath algorithm to the net with the selected place as
the output. The result of the algorithm is a net called PN'.

4. Remove from A all the places that are present in PN'.
5. Reverse the direction of the arrows of PN'.
6. Initialize PN' with a token in pO and draw an abstract Occurrence graph using the OG

AnalyzerTM.
7. Query the constructed Occurrence graph for nodes with multiple input arcs.
8. Find the firing vectors corresponding to each input arc/path, which bring the system from

the initial state to the one under consideration. Remove duplicate firing vectors.
9. The remaining firing vectors identify the set of redundant rules.

Example I illustrates these steps.
10. Query the constructed Occurrence graph in step 6 for nodes that are subsets/supersets of

each other.
I1. Find the firing vectors corresponding to each node, which bring the system from initial

state to the ones under consideration. Remove duplicate firing vectors.
12. The remaining firing vectors identify the set of subsumed rules.

Example 2 illustrates these steps.
13. Repeat the steps as long as there are elements in A.

Example I (Redundant Rules)

Figure 3 shows the output of the FindPath algorithm applied to a hypothetical rule base. The
algorithm described above starts with step 4. Figure 4 shows the PN' initialized and all arrows
reversed in direction. Figure 5 shows the Occurrence graph constructed for the PN' in Figure
4. The following two distinct firing vectors were found corresponding to three input arcs to the
bottom node in Figure 5.

Fl = F2 =

0] B I t3
k~t4 kI jt4

The corresponding redundant rules are:

tl: pl, p2, p3, p4 -> pO

and

t2: p 1, p2 ->p5
t3: p3, p4 ->p6
t4: p5, p6 -> pO
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Figure 3 PN'

Figure 4 PN' Initialized and Arrows Reversed

pi,

=-0123456

tt 4

Figure 5 Occurrence graph for PN' in Figure 4
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Example 2 (Subsumed Rules)

Figure 6 shows the output of the FindPath algorithm applied to a hypothetical rule base. The
example illustrates steps 10 and I I of the algorithm. Figure 7 shows the PN' initialized and all
arrows reversed in direction. Figure 8 shows the Occurrence graph constructed for the PN' in
Figure 7. The shaded node s I is a subset of the shaded node s2. The following two distinct
firing vectors were found to correspond to these two states.

FI :l 0 1

0 t2 1 r2
FI= F2=

0:r3 1 0

L0-r4 L1:t4

The corresponding rules are:

tl: pl, p2 . p3 -> p0

subsumes

t2: p l, p2 ->p5
t3: p3, p4 -> p6
t4: p5. p6 ->pO

Figure 6 PN'
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Figure 7 Modified PN' with Initial Marking

pi,
i=01 23456

t 00000011t

sl
S01 1 1000J 01 10001 ] 0001110

Figure 8 Occurrence Graph for PN' in Figure 7

Algorithm for Conflicting Rules

I. Construct an ordinary PN of the original CPN by replacing arc expressions by constants
and redefining all color sets in the Global Declaration node.

2. Construct a set, B, consisting of places which have their negations present in the net
(starting from the set of valid outputs).

3. From B select a place, pO and its negation -p0. merge these two places into a single place
P0. Apply the FindPath algorithm to the net with the P0 as the output. The result of the
algorithm is called PN'.

5. Reverse the direction of the arrows of PN'.
6. Initialize PN' with a token in PO and draw an abstract Occurrence graph using OG

AnalyzerrM.
7. Follow steps 7 - 11 from the algorithm for redundant and subsumed cases. If any of such

cases is found, the corresponding firing vector identifies the presence of conflicting rules.
Example 3 illustrates the steps.

8. Repeat the steps as long as there are elements in B.
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Example 3 (Conflicting Rules)

Figure 9 shows the output of the FindPath algorithm applied after the place pO and its negation
-p0 are merged together into a single place P0. the resulting place P0 is shown with dotted
line. The modified net is initialized with a token in P0 and the directions of all arrows are
reversed. An Occurrence graph is constructed for the net. the graph would resemble the graph
in Figure 5. The two distinct firing vectors (same as in Example I) would give the following
conflicting rules.

t1: p1. p2, p3. p4--> -pO

and

t2: p L p2 -> p5
t3: p3, p4 -> p6
t4: p5, p6 -> p0

Figure 9 PN' with Merged Place p0

4.2 VARIABLE STRUCTURES: HEURISTIC RULES IN THE LATTICE
ALGORITHM CONSTRAINTS

4.2.1 Problems of Concurrency and Coordination in Decision Making
Organizations

This task utilized Colored Petri Nets (CPN) as supported by Design/CPNTM to revisit aspects
of an earlier analysis of a two-person hierarchical organization. The project focused on how
Colored Petri Nets both (I) uncovered a need to address the various stages of decision making
(as modeled by transitions in the Petri Net terminology) when faced with large amounts of
information requiring simultaneous evaluation (concurrent or having multiple enablements in
Petri Net terminology), and (2) provided a means to represent these various stages of
information. Colored Petri Nets. it is shown. can capture the example with a level of flexibility
that none of the earlier methodologies could. This study also revealed that the underlying
assumptions of Petri Net software can highlight different types of information processing.
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The results of the study have been documented in a technical report (#8.1 in the documentation

list) that is being submitted separately.

4.2.2 Deadlocks and Traps

Petri Net theory has been a successful tool for the study of concurrency in discrete event
systems because it allows their detailed and precise mathematical representation. Analysis of
Petri Nets can reveal important information about the structural and dynamic behavior of the
modeled system, and this information can then be used for evaluation and to suggest
improvements or changes. One of the analysis techniques is the determination of deadlocks and
traps. Deadlocks are sets of places which remain empty once they have lost all tokens.
Conversely, traps are sets of places which remain marked once they have gained at least one
token. Deadlock and trap theory has a direct application to the study of coordination in decision
making organizations. In general, the presence of deadlocks and/or traps can indicate
pathological conditions in the organization's design.

Research on deadlock and trap problems started in the early 70's, as indicated in the references
(Silva, 1990). Basic deadlock and trap problems in Petri Nets have been resolved to a certain
extent, but computation of deadlocks and traps has been limited to strongly connected free
choice nets, which are a subset of ordinary Petri Nets. No work that has appeared in the
literature has extended the deadlock/trap theory to hierarchical Petri Nets.

Because of the complexity of possible net transformations and the limited types of deadlocks
and traps that can be calculated by the currently available algorithms, a more general and easy
to implement algorithm is needed to find deadlocks and traps in Ordinary Petri Nets. Also, as
real systems are often designed in a hierarchical modular structure, an algorithm is necessary to
compute deadlocks and traps in hierarchical Petri Nets.

The basic structural and behavioral features of Petri Nets were introduced in C.A. Petri's
papers in early 1960's. The notions of deadlock and trap were first defined by Hack in 1972
(Esparza, 1990). The requirement that all deadlocks remain marked can be structurally achieved
if all deadlocks contain initially marked traps; this is known as Commoner's property (Best,
1987). Commoner's property has been proved to be necessary and sufficient for the liveness of
Free Choice and Extended Free Choice systems. It is also sufficient for Asymmetric Choice
systems (Best, 1987).

The practical application of the theory of deadlocks and traps requires to have efficient
algorithms for their computation. The classical methods use Boolean equations (Silva, 1990),
sometimes translated into linear inequalities (Esparza, 1990). An alternative approach was
studied by Lautenbach (1987), in which deadlocks and traps were related to special P-
semiflows of an associated net, thus opening up the possibility of applying the S-invariant
method to the calculation of strongly connected deadlocks and traps in strongly connected Free
Choice nets. This algorithm requires transformation of the net into an associated marked graph.
which may become a very tedious procedure for very large Petri Nets.

This research task addresses two major problems :

I. Development of algorithms that can find deadlocks and traps in ordinary Petri Nets
with no structural restrictions.
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3. Extension of the deadlock and trap algorithms to hierarchical Petri Nets. In order to
do this, matrix relations between hierarchical Petri Nets and the equivalent non-
hierarchical Petri Nets need to be established.

In the first stage of this research, only Ordinary Petri Nets are considered. Once these
problems have been resolved, the hierarchical Colored Petri Net case will be addressed. The
goal is to generalize the solution to the deadlock and trap problem; one way to do this is to
develop a general algorithrm, that can find all deadlocks and traps without complex
transformation of the original nets, which is the currently available technique. While the
current methods are restricted to strongly connected Free Choice nets. this research addresses
the general. unrestricted case. Also, this work will extend deadlock and trap theory to
hierarchical Petri Nets.

Ordinarv Petri Nets
A Petri Net is a bipartite directed graph represented by a quadruple N= (P. T, I, 0) where
* P = p.. pn} is a finite set of places.,
• T = t,. tm} is a finite set of transitions.
* 1 is a mapping P x T -> {0,1 ) corresponding to the set of directed arcs from places to

transitions.
* 0 is a mapping P x T -> ( 0. 11 corresponding to the set of directed arcs from

transitions to places.

An example of a Petri Net is shown in Figure 10. Places are represented by circles and
transitions by bars.

PI tL1 p2
3t3 p5

Lp3 Q p

Figure 10. Ordinary Petri Net

A marking of a Petri Net is a mapping : p-> 10, n) which assigns a non-negative integer
number of tokens to each place of the net.

A transition is enabled by a given a marking if and only if each of its input places contains at
least one token provided each input arc represents a single connection between the place and the
transition. When a transition is enabled, it can fire: one token is removed from each input place
and one is added to each output place.

Consider the Petri Net in Fig. I I with the indicated marking.

p1I tI p2
Bp5

Figure 11. Petri Net with Marking

In Fig. 11, if t l and t2 fires, then the resulting marking is shown in Figure 12.
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p1 tl p2P4 0p5

Figure 12 Petri Net after Firing

Transitions t3 is enabled. If t3 fires, the new marking is shown in Figure 13.

pI tl p2 p
0p5

Figure 13. Petri Net after Second Firing

Hierarchical Petri Nets allow the designer to create a large model composed of many
submodels, and isolate a segment to study its details without disturbing or altering the entire
structure. They also provide a modular approach towards modeling a complex system. This
feature is vital for designing complex organizations. Basically, there are two ways to construct
hierarchical Petri Nets. One is by a compound transition, and the other is by a compound place.
As compound transition are more often used in the construction of hierarchical Petri Nets, only
compound transitions will be used in this research.

Compound Transition

If a subnet of a Petri Net model is replaced by a single transition, the single transition is termed
compound transition. It represents the aggregated effect of the processes represented by the
transitions of the subnet. The model with compound transitions describes the system at a
higher degree of abstraction than the one without them.

Figure 14 shows a Petri Net model of a system in which the system's functionality is described
at the most detailed level. The dotted box contains the processes that are to be aggregated. In
Figure 15 the outlined subnet is shown replaced by a single transition - a compound transition
denoted by the label "HS". The subnet that represents the compound transition at a subpage is
shown in Figure 16. The term subpage is used in Design /CPNrm, a commercially available
software package for Hierarchical Petri Nets, to denote pages which contain the subnets
replaced by compound transitions and compound places.

p2 tI2 p4 t 6

t p5 t5
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Figure 14 Detailed Description of a System

Figure 15 Systen:'s Description with a Compound Transition

p2 t 2 p4

Figure 16 Subpage Representation of the Compound Transition

The places, in Figure 16, with label "B in" or "B out" represent the port nodes. Port nodes are
defined to be the input and output places of the subnet; its connections with the uncompound
net. On the other hand, all those places whose input and output transitions are defined within
the subnet are not port nodes. Port nodes are used to preserve the connectivity of the original
net. They model the sockets for the places that exist in the preset and postset of the compound
transition in the system's net. The places pI, p4, p5, and p9 in Figure 15 are defined as port
nodes in Figure 16.

Deadlocks And Traps Of Petri Nets

A Petri Net representing an organization consists of two parts, a net and a marking. The net
models the static structure of the organization, and the marking represents its state. By saying
"structure" of a Petri Net, we mean that the net has properties that are dependent on the way
places and transitions of the net are interconnected by the flow relations, and these properties
are independent of the marking of the net.

The dynamic behavior of a net depends on the initial marking of the net. A marking of the net is
a distribution of tokens over the places. In Ordinary Petri Nets, tokens are indistinguishable
from each other. The dynamics of the net are captured through the firing of transitions. It is
obvious that the behavior of marked net is closely related to the structure of the net. The
behavior properties include, for example, deadlocks and traps, the existence of invariants,
boundedness, and many others. Deadlocks and traps are related to the liveness of a Petri Net.

When investigating the behavior characteristics of a Petri Net, it is important to consider parts
of the net which will never be marked or which will never lose all their tokens. Such parts will
be considered and, in particular, we shall consider those in which such situations are easily
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recognizable. A set D of places will never be marked again, after losing all tokens, if and only
if no transition which contains in its postset a place belonging to D may ever fire again. In
particular, this is the case when all these transitions also contain a place belonging to D in their
preset. A set of places that meets this condition is called a deadlock. Deadlocks are critical for
liveness analysis, because transitions may never be enabled again if they contain places of an
unmarked deadlock in their preset.

There are also net parts which will never lose all tokerns again after they have once been
marked. This is the dual to the deadlocks: it is the case in which for some set of places. Q,
when every transition removing tokens from Q also puts at least one token onto Q. If Q fulfills
this condition, then Q is called a trap.

The preset of a node is the set of all nodes having arcs leading to it. The postset of a node is the
set of all nodes that it has arcs leading to. The formal definition of preset and postset are given
as follows:

Definition I Preset and Postset
Let N= ( P, T, 1, 0) be a Petri Net.

Let x -P u T. The preset *x and postset x are given by
*x={yGPuTI(yx)E (PxT) u(TxP)};

x =* YEPuTI(X,y)E (PxT) u (Tx P)};
The preset of a set of nodes is the union of the presets of these nodes.
The postset of a set of nodes is the union of the postset of these nodes.

Definition 2 Deadlocks and traps
Let N= ( P, T, 1, 0) be a Petri Net.

1. A non empty set D c P is called a deadlock iff *D c D*.
2. A non empty set Q C_ P is called a trap iffQ* g *Q.

Deadlock and trap properties:
Let N= ( P, T, I, 0) with an initial marking MO,
1. Non-marked deadlocks remain non-marked.
2. Marked traps remain marked.
3. The union of deadlocks is still a deadlock- the union of traps is still a trap.

Deadlocks, Traps And Petri Nets Hierarchies

There are four classes of ordinary Petri Nets that form a Petri Net hierarchy (Rozenberg and

Thiagarajan, 1986 ) as shown in Figure 17.

x-nets

marked graphs <state machines

Frree choice nets

no-restriction nets

Figure 17 Petri net hierarchy
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"* Deadlocks and Traps in X-nets
X-nets are a class of nets such that each place has at most one input and one output
transition, and each transition has at most one input place and one output place.(Rozenberg,
and Thiagarajan, 1986) Deadlocks and traps are easy to find in x-nets. In general. for
strongly connected x-nets, deadlocks and traps are the cycles in an x-net. As the strongly-
connected x-net itself is a simple cycle, so the deadlock and trap for the x-net are actually
the same -- the x-net itself.

"* Deadlocks and Traps for Marked Graphs
For strongly connected marked graphs, deadlocks and traps are the cycles in the nets.

"* Deadlocks and Traps for State Machines
For state machines, deadlocks and traps are the same -- the net itself.

"• Deadlocks and Traps for Free Choice (FC) nets
To find out deadlocks and traps for Free Choice nets, we need certain algorithms.
Lautenbach (1987) proposed an algorithm that can calculate strongly connected deadlocks
and traps for strongly connected FC nets by applying the S-invariant algorithm. This
algorithm requires that the net be transformed into an Associated Marked graph. Details of
this algorithm can be found in Lautenbach (1987).

"* Deadlocks and traps in other nets
Current deadlock/trap algorithms can be handled up to strongly connected Free Choice
nets. The deadlocks and traps calculated are strongly connected components.

APPROACH

The approach is based on the mathematical definition of deadlocks and traps, which is
dependent on the place preset and place postset relations in a Petri Net. Then, by means of
matrix representation, these relations are specified in a Preset-Postset Relation (PPR) matrix.
Deadlocks and traps can be found by checking the PPR matrix.

The Preset-Postset Relation Matrix

As the preset and the postset of a place set are both transitions sets ( could be empty), so the
preset and postset relation of a place set is actually a relation between a place set and a transition
sets. Therefore, we can set up a matrix that shows the relations of preset and postset.

The Preset-Postset Relation (PPR) matrix is defined as follows :

Given a Petri net N= ( P, T, I, 0), Choose a place set PSi g P, Suppose nr place sets are
chosen, the Preset-Postset relation is represented by a nr x mr matrix denoted as R ( PPR
matrix). nr is the number of place sets, mr is the number of transitions of net N. Rii denotes the
element in the i-th row and the j-th column in the matrix, it can has one of the following values:

" Rii = -1, if place set PS1 has the property that transition tj r PS, *, and tj may or may

not be in *PS.

"* Rij = 1, if place set PS, has the property that transition tj e *PSj, but tj e PSi*.

"* RiJ = 0, if place set PS, has the property that transition tj e PSi* and tj e *PSi .

Example Given the net shown in Figure 18,
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P1 ti p2 t2 p3

Figure 18. A Petri Net, N I

The Preset-Postset Relation matrix is:

tI t2 t3

pl}1 -1 0 0 row I *{pl}=I, }{pl)*= (t)

Ip2) 1 -1 0 row2 *(p2)= I tl I, {p2}*= {t2)

R= {p3) 0 1 -I row3 *(p3= { t2 }, (p3}*= {t3
{p2, p3} 1 -1 -1 row4 *{p2, p3}=(tl,t2},(p2, p3)*={t2, t3)

(pl,p 2 ) -I -1 0 row5 *{pl, p2}= Itl , (pl,p2}*= {tl,t2l
{p1, p2, p3) -I -1 -1 row 6 *{pl, p2, p3 = {tl, t2), {pl, p2, p3 }*= {tl, t2, t3)

Figure 19. The Preset-Postset Relation Matrix of net N I

In this PPR matrix, we can see the preset and postset relation of place sets. By checking the
matrix R, if a row j has all its elements be either -1 or 0, then its corresponding place set is a
deadlock. In this case, row 5 is such a row. So (p1, p2) is a deadlock, while {p2, p3} is not a
deadlock.

From Figure 19 it can be seen that the row 5, which represents the place set (p1, p2) preset
and postset relations can be derived from row I and row 2. Row 4 can be derived from row 2
and row 3. This derivation is illustrated as follows:

Place set PPR element ( t I column) Preset and Postset relations

(p1) -1 tlr:(pl )*, tImay ormay not be E*{pl

Ip 2 } 1 tIe *{p2), tl *{pl) e {p2}*

(pl, p2) (-I)+ I =(-I) tle {pl, p2}*, tl may or may not be E *(pl, p2}

in this case, tlE *(pl, p21.

From the illustration, it can be seen that {p 1, p2 I's PPR element in column t I can be obtained
from {pl) and {p2)'s PPR elements in column tl. Rules of operation are therefore set up to
derive the additional place set rows in the PPR matrix. If place sets that may related to
deadlocks and traps are derived in the PPR matrix, deadlocks and traps can be found. The
commutative operation rules are defined on the PPR matrix elements, as follows:

I. 1 + I = 1; 4 +(-1)=-[;
2. 0+ 0--0; 5 (-!)+ =-;
3 1 +0= 1; 6 (-I)+0=-1;
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The trap problem is the dual of deadlock problem. To calculate the trap supports for the net N,
we can apply the deadlock algorithm but replace the incidence matrix C by the transpose of Cd (
incidence matrix of the dual net).

The Deadlock/ Trap Algorithm

The deadlock/trap algorithm being developed is based on the preset-postset relation matrix and
some special "addition" operation rules of the matrix. The goal of this algorithm is to start
from the incidence matrix that describes the structure of a Petri Net, and then try to find out
place sets that satisfy the deadlocks definition. To do this, we need to perform certain
operations on the original incidence matrix. The deadlock algorithm steps are shown in the
following flow chart

Given a Petri Net N

Initialize the PPR matrix
based on the incidence

matrix of N
Si=i+lI

Calculate new place sets in
PPR matrix with transition

ti included

ave *llthe No

Check rows in PPR matrix
that have either 0 or negative

elements

Deadlocks
in net N

Figure 20 Preliminary Deadlock Algorithm Flow Chart

The goal of this research is to find the deadlocks and traps of the unfolded net directly from the
deadlocks/traps found in hierarchically structured superpage nets and subpage nets without
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applying the deadlock/trap algorithm to the large incidence matrix of the unfolded net. The key
issue is to find out the incidence matrix relations of superpage nets, subpage nets and the
equivalent non-hierarchical Petri Net (unfolded net). The deadlocks relation between subpage
nets, superpage nets and unfolded net should be embedded in their incidence matrix relations.
These relations are reflected in the port nodes. The preliminary steps of this work are shown in
the following flow chart (Fig. 21):

Given hierarchically structured Petri Nets
(superpage nets and subpage nets)

Find out deadlocks in Find out port nodes, Find out deadlocks in
each superpage net and matrix relations each subpage net

Combine superpage net and subpage net deadlocks
based on the port nodes relations

Deadlocks of the equivalent unfolded net

Figure 21. Preliminary Hierarchical Petri Net Deadlock Algorithm Flow Chart
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5.0 MEETINGS

There were no meetings during this reporting period.

6.0 CHANGES

There were no changes during this period.

7.0 RESEARCH PERSONNEL
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Ms. Johnson, a graphics designer, is working on the development of techniques for
presenting the dynamic behavior of the Colored Petri Net models of organizations.
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